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GENERIC NEURAL FLIGHT CONTROL AND AUTOPILOT SYSTEM

John KaneshigeJohn Bull and Joseph J. Totah

Abstract

This paper describes a genemeural flight
control and autopilot system, which candmplied to a
wide range ofvehicle classes. A neurdlight control
system isused to provide adaptivflight control,
without requiring extensive gain-scheduling explicit
system identification. Thaeuralflight control system
uses reference models to specifydesired handling
qualities, and can receive commandsom a generic
guidance system to provide outer-loop autopilot
control. The generic guidance system performs
automatic gain-schedulingsing frequency separation,
basedupon theneuralflight control system’sspecified
referencemodels. A variety ofdifferent aircraftwere
examined to ensurapplicability to multiple vehicle
classes including commercial transportshigh
performancanilitary aircraft, and hypersonic concepts.
Simulation resultsaare presentefor a mid-sizedtwin-
engine commercial jet transport conceptnadified F-
15 with moveablecanards attached tihe airframe, and
a small single-engineuninhabited aerial vehicle
hypersonic“waverider’ concept. Resultsdemonstrate
that the generic neuralflight control and autopilot
system can achieve performance comparable efxh
aircraft's respective conventional system, while
providing additional potential for accommodating
damage or failures.

Introduction

Overthe last 50 yearsaircraft avionics have
evolved from basic electrical systems to highly
advanced flight and vehicle managementsystems.
However, these technologicahdvances have also
resulted in a dramatic increase time costsassociated
with avionics development, from approximately 4% of
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the flyaway cost for aworld War 1l fighter, to about
56% for America’s highly advanced F-22 Ragtor.

A portion of the costssociatedvith avionics
can be attributed to control law developméfiith the
advent of fly-by-wireflight control technology, it has
becomepossible to shape the handling qualities of an
aircraft to desiredspecifications, even wheapplied to
unstable aircraft designs. Most conventional flight
control systems utilize extensivgain-scheduling in
order toachievedesiredhandling qualities. Whilahis
approach has proven to be very successful, the
development process can be expenaivgoften results
in aircraft specificimplementations.Over the past
several yearsyariousadaptivecontrol techniqueshave
been investigated.

A neural network based approach,
incorporating direct adaptive control with dynamic
inversiorf, was selected inorder to develop a generic
flight control systemcapable ofproviding consistent
handling qualitieswithout requiring extensivegain-
scheduling or explicit system identification. This
particular architectureses bothpre-trained andn-line
learning neural networksand referencemodels to
specify desired handling qualities.Pre-trained neural
networksare used to providestimates ofaerodynamic
stability and control characteristicgequiredfor model
inversion. On-line learning neural netword®e used to
compensate for errorand adapt tochanges inaircraft
dynamics. As a result, consistent handling qualities can
be achievedacrossflight conditions and for different
aircraft configurations. Thearchitecture remains the
same fordifferent aircraftapplications,requiring only
the pre-training of neural networks and #pecification
of desired handling quality reference models. An
Integrated Vehicle Modeling Environment(IVME)*,
which incorporates vortex-latticeode with a rapid
aircraft modeler, isused to estimates aerodynamic
stability and control characteristics for pre-training
neural networks.

A genericguidancesystem isused to provide
autopilot control or pilotfeedbackthrough a flight
director. This commercial aircraft based guidance
system takesadvantage ofthe consistenthandling
qualitiesprovided bythe neuralflight control system.
Automatic gain-scheduling isperformed by using
frequency separation,based upon the neural flight
control system’s specified reference models.

Simulation evaluationsvere performed on a
variety of different aircraft toensureapplicability to a
wide range ofvehicle classes including commercial
transports, high performance military aircraft, and
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hypersonic concepts. High fideligerodynamic models
were supplied for the simulated aircraft described below:
» LockheedGeorgiaCompany’'s commercial transport
concept, developed as a simulation in 1983,

NASA Dryden’s F-15 ACTIVE aircraft, equipped
with canards and thrust vectoring nozzels, and
Accurate Automation Corporation’s LoFLYTE
uninhabited aerial vehicle (UAV)developed as a
hypersonic “waverider” concept.

This papercontains a brief overview of the
neural flight control andjenericautopilot systems, and
presents simulation  results  comparingtheir
performance to each aircraft's respect@nventional
systems. Piloted simulationgere performed on the
Advanced Concepts Flight Simulator (ACFS)at
NASA Ames Research Center.

Neural Flight Control System

The neuraflight control architecture isbased
upon the augmented modelinversion controller,
developed byRysdyk andCalise® This direct adaptive
tracking controller integratesfeedback linearization
theory with both pre-trainedndon-line learningneural
networks. Pre-trained neuralnetworks are used to
provide estimates oferodynamicstability and control
characteristicsrequired for model inversion. On-line
learning neural networkare used to generate command

augmentation signals toompensate for errors in the
estimatesand from the model inversion. The on-line
learning neural networksalso provide additional
potential foradapting to changes in aircraft dynamics
due to damage drilure. Referencenodelsare used to
filter commandinputs in order to specify desired
handling qualities. A Lyapunovstability proof
guarantees boundedness tfe tracking error and
network weights.

Figure 1 contains aliagram of the neural
flight control system. Commandse generated by the
pilot through lateral and longitudinal stickand rudder
pedal displacementdlf, din, dpd). Turn coordination is
provided throughthe suppression of lateratceleration
(ny). Stick andrudderpedalgains Kla, Kin, Kpd are
used toconvert displacement commanidso roll rate,
and aerodynamic normal and lateral acceleration
commands . NZme NYemd- These commands are
then transformed into corresponding roll rate, pitch rate,
and yaw rate commandsplm, Geom 'eom)- REference
models are used to generate filtered catmmands (.,
0. fo and acceleration commandsp’(, q's I'y)-
Dynamic inversion isused tocompute thenecessary
control surface deflectiongdéil, dtail, stab, elev; drud,
dcan. Adaptive neuralnetworks useaircraft state
information Xp, Xg, Xr) to generate pseudoontrol
augmentation command&lg.,, Ug.s Ur,y) in order to
compensate for errorp( d., ) computedirom aircraft
feedback|g, q, r).

P
| |_'
Pemng Peom , Pe * U ;
dla Kla o +| Pe Kp, + ECE/ . P dail p,qr .
P-Reference - dtail
Model Upad
y A
p P-Neural
Up Network
e ___/
Xp, Up
q
| |_'
nz g W dc
din Kin —a + Ui stab Xp, Xq, Xr
St A Kq,,+’%‘ : q p, Xq, Xr
Q-Reference . elev
Model
q h
dpd Kpd Xq, Ug \
r.
ny, cmd r O!) r I—b
+| c +
K com »] (d r Ur drud
|_> - d Ste, + = Kfp + ﬁ:r + u Ve Ny, N2,
R-Reference - dcan 06, ap
ny Model Uraq P
r R-Neural
! !I' Netwark
Command Xr, Ur Dynamic Aircraft
Transformation Inversion Dynamics

Figure 1. Neural Flight Control System
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Referencéviodels

The referencemodelsusedfor this evaluation
consisted of first-orderoll rate, pitchrate andyaw rate
transferfunctions with a DC gain of one. Table
contains thereferencemodel frequenciew,, w, )
that were usedfor each aircraft. Alternate reference
models can be applied to speciflifferent handling
qualities foreachaircraft. Referencemodel scheduling
can also be applied in order
performance limitations at different flight conditions.

Table 1. Aircraft Reference Model Frequencies

Fregueny | Trangort F-15 UAV
W, 3.5 5.0 4.2
W, 2.5 3.8 3.1
W, 2.0 3.0 1.5

A design criteria isusedfor computing stick
andrudderpedalgains, which isbased on desirerbll
rate, and aerodynamicnormal and lateral acceleration
commandimits (Pmax NZnaw NYma- Table 2 contains
the design criteria parameters used to comptitd and
rudder pedal gains for each aircraft.

Kla=p,,/da,., @

Klnzvg(nzm/dlnmax) @
t

Kpd = 2 (/PO ) ©

t

The longitudinal stick and rudder pedal gains are
scheduled on true airspeeg) (andalso incorporates the
acceleration of gravityg).

Table 2. Aircraft Design Criteria Parameters

Limits Trangort F-15 UAV

Prnax 0.28 2.00 0.72

NZpa 1.12 7.2 1.68

NYinax 0.16 1.2 0.48
Commandrransformation

1

to accommodate

The scaling factor @, is used for
accelerations to g's.

While sensorscan provide pitch and bank
angle measurement§,(¢), translational velocitiesu(

v, W) and accelerations \{, w) are normally not

converting

available, As a result, the command transformations are

approximated by

_9,

V .
Oeom = = NZ1g +7g psinf 6)

t t

r

com

= V(nyCmd +singcosd) + ptana  (7)
t

Estimated valuesare usedfor angle-of-attack d),

sideslip @), andgroundspeed ;). The elimination of
the term {g/g,)cosgcosd} causesthe definition of the
normal acceleration command to excludée force
necessary to compensate fibre aircraft's orientation
with respect togravity. Additional terms forproviding
level-turn compensationan be applied foaircraft that
are limited to small bank angle operations.

Normal and lateral acceleration feedback can be

applied in order to compensate for errors in the
command transformatioapproximation.However, the
overall handling qualities would beaffected by the
slower frequenciesequiredfor outer-loop control. As a
result, feedback isnot incorporatedinto the normal
acceleration command inorder to maximize the
frequencyresponse in the longitudinalxis. However,
feedback isincorporatedinto the lateral acceleration
command in order to minimize any adverse yaw
buildup?

Yo = KY (Yrg = NY) ®)
Ky =& ©
qCy, 3

Frequencyseparation isused toensurethat theouter-
loop lateral acceleratiosontrol will not interfere with
the inner-loop yaw rate control.

Dynamiclnversion

Dynamic inversion isbased upon feedback
linearization theory. Nogain-scheduling isrequired
since gainsarefunctions of aerodynamicstability and
control derivative estimatesand sensor feedback. A
Levenberg-Marquard{LM) multi-layer perceptroh is

Transformations can be used to convert normalused to provide dynamiestimates fomodelinversion.

and lateral aerodynamic acceleration commanitgo
body-axispitch rate and yaw rate commands.These
relationships can be expressed as

q= [ 7 — gcos@cosf —vp—w @
u u

r:&nerv—wp—gsm(pcosﬁ? ©)
u u

3

The LM network waspre-trainedwith stability and
control derivativedata generated bthe IVME vortex-
lattice code. In general, derivativeestimates were
achieved to within 10% of their actual vales.

To performthe model inversion, acceleration

commands are used to replace the actual accelerations in

the quasi-linear model
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%D— A(x)%qD+ B%Ionm
B8 Bad

The model |sthen inverted in order to solve for the
necessary control surface positions.

.0  WU,0

(=B %qurAm%
P.H gbH &

For aircraft equippedwith redundantcontrol
surfaces, control allocation isandled by blending
control surfaces according tadesired specifications.
Table 3 contains the contrsurfaceblending foreach
aircraft.

(10)

11)

Table 3. Control Surface Blending

Transport F-15 UAV
. dal dtail = 2dail dtail
Oon elev stab stab
Oyir drud drud = -dcan drud

For the F-15 ACTIVE aircraft, symmetritanards ¢an
were scheduledwith angle-of-attackand controlled
independently.

Error Handling

If dynamic inversion and aircraft dynamics
behaved as a perfenttegrator foreach of the three
axes, then thelosed-loopsystemswould be identical
to their corresponding reference models. However,
errors are introduced due to inaccuracies irdérévative
estimatesand from the model inversion. In order to
achieve a rate-command-attitude-h@RICAH) system,
error handling is used toorrectfor errorsdetectedrom
roll rate, pitch rateand yaw ratefeedback.The error
dynamics, defined by proportional and integral (PI)
gains, must be fast enough toack the reference
models, yet slow enough to nintterferewith actuator
dynamics.

In order to ensure low-gainerror handling
performance, the error handling systendésignedwith

naturalfrequencies @,) that match theeference model

frequencies,and with damping ratios {) of 1/\“h

B s+w’ 14
- 2
s +2{w s+ W’

AdaptiveNeuralNetworks

The adaptive neural networks work in
conjunction with the error handling system. By
recognizing patterns in the behavior of the error, the
neural networksan learn to removéiases through
control augmentation commands. This allows the
integrators to operate at nominal levels, without having
to windup to remove errobiases. This allows the
neural flight control system toprovide consistent
handling qualities.

A two-layer sigma-pi neural network isused
for eachchannef Inputs into thenetwork consist of
control commands, sensdeedback, ancbias terms.
Table 4 contains thanputs for each input signal
category.Normalizedinputs for the aircraft's altitude
(h) and airspeed are usedtime first category ofinputs,
to compensate for dynamic pressure effects.

Table 4. Input Signal Category Elements

P-Network Q-Network R-Network
C,| .1,v,vaih | .1,v,vAh A, v, v4 h
r P, Pe 1,9, q Lp,r,rg
C, 1- e‘(UP-UPaa) 1- e_(Uq_Uqad) 1- e‘(Uf‘Ufau)
1+ e‘(UP‘UPau) 1+ e‘(UQ‘UQad) 1+ e_(Ur_Urad)
(0N d,0,B d,0,B d,0,B

The output of theneural network is the
control augmentation command.

=W'B(C,C,,C,) (15)

The vector of basis function8)(is computedrom the
inputs in each signatategoryusing anested kronecker
product. The network weight&\{ arecomputed by an
adaptatiorlaw, which incorporates an adaptation gain
(G) anddeadbandl(), andthe command augmentation
error U,) computed by the error handling systém.

W = -G(U,B+ LU W) (16)
_ 1+K,
Ue_zKIe 2|<Ke tn

These frequencies and damping ratios are reflected in thep,q adaptationgains and deadbandsused for this

Pl gains.
K, =2{w, (12)

K =w? (13)

If dynamic inversion and aircraft dynamibshaved as a
perfectintegrator foreach ofthe three axes, then the

resulting closed-loop error handing system would be

evaluation were 18500 and 0.1 respectively.

WindupProtedion

Windup protection isincorporated to prevent
integrators and neural networks fromtrying to
compensate for errors during control saturatidindup
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protection isactivatedwhen an actuator isommanded  separationpased orthe neuraflight control system’s
beyondits limit, causing the loss of control on one specified reference models.
axis. Figure 2 contains aliagram of the generic
When windup protection isactivated, the autopilot concept. The pilointerface isthrough the
corresponding integrator beconlewited at its current mode control panel (MCP). The mode processor
value. Adaptation for theorresponding neural network determines flight mode and target information, which is
is alsoturnedoff, by setting theadaptationgain to used by the guidance control laws, to generate
zero. To prevent to propagation of error durdygamic  flightpath angle (FPA)and bank angle commands.
inversion, the saturatedcontrol axis is essentially Automatic gain scheduling igerformed toensure that
removed from the B-matrix. Thesaturated actuators outer-loopguidancecontrol doesnot interferewith the

become effectively modeled as part of the plant. inner-loop flight control dynamica/Vhenthe autopilot
is engaged, commandse transformednto body-axis
Generic Autopilot System rate commandsnd sent to theneural flight control

system.Whenthe autopilot is notngaged, graphical

Guidancesystemsused in commercialaircraft feedback may be provided through the flight director.

can provide outer-loop autopilot control orpilot Since the neuraflight controller has the
feedbackthrough a flightdirector. Most conventional ~ ability to adapt,the generic guidanceystemdoes not
guidancesystems utilize again-scheduling approach, have to rely onthe use of integrators, ilrder to
which is dependenipon the inner-looperformance of compensate foerror biases. This allows thesame
the flight control system. Thgeneric guidanceystem  control laws to be used for both the autopdatiflight

uses a similar approach, however takes advantage of th@irector systems. Previousesearchhas shown that
neural flight control system’s characteristic of conventional flightdirector systems, mayencounter
providing consistent handling qualities. Automatic difficulty compensating forrrors due to asymmetries
gain-scheduling is performed, using frequency caused by unexpected damage ofailures?

Mode Control Panel

Il I s ===
® ‘ -
| |

(o) [ p
1 [

Generic Aircraft

AUtOpi lot < Feedback
r-———"——>—"7—= |
: Mode Processor l Flight Director

r Automatic

| i
_": Gain-Scheduler : /
oo oo o= Aircraft
|r (Pitch & Roll) :_ Feedback

| Control Laws |

[~ "(Body-Axis) |
' Command L 5
| Transformation I

Neural F”ght Flight Control
Controller Surface commands

Reference Model
Frequencies

Figure 2. Generic Autopilot Concept
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Mode Processor

The mode processor receiv@sputs from the
MCP and generatedongitudinal and lateral guidance
modes and targets. Table 5 contairlsstaof the modes
supported for this evaluation.

Table 5. Supported Flight Modes

Longitudinal Modes Lateral Modes
FPA Select Bank Select
Vertical Speed Heading/Track Selec
Altitude Capture/Hold Heading/Track Hold
Glideslope Localizer
Capture/Tracking Capture/Tracking
Flare

AutomaticGain-Scheduler

The automaticgain-schedulercomputes all
guidancecontrol gains using a combination of inputs
from the neuraflight control system, sensdeedback,
and design criteria specifiedconstants. Frequency
separation, based upon the neural flight control
system'’s reference models,used toensurethat outer-
loop guidance dynamicsare slow enough toavoid
interference with inner-loop flight control.

A maximum FPA command ¥,,) can be
specified, or computed asfanction of stalllimits. A
maximum bank angleommand @,,), canalso be
specified, or selecteftom the banklimit selector on
the MCP. The FPA and bardommandimits used for
this evaluation correspond to 8fggrees and 1@egrees
respectively.

Pitch and roll rate commandlimits are
specified in terms of percent stick deflections.

6, =25% %\% nzmaxg (18)
Brex = 25% (Pra) (19)

The maximum bank angleommand is used tdimit
the corresponding heading (or track) rate command.

e = (20)

=cosfsing,.,
Vt
The guidancecontrol laws are composed of
time-constantbased proportional gains. Inorder to
achievethe desired first-order response, these time-
constants must be slow enoughatmid being effected
by theratelimits. Therefore lower-limits are imposed

on the time-constants by specifying the maximum

errors in which the rate limits will have no effect.

6

KT@n’in = BERRORmax/émax (21)
KT iy = Perronima:/ Pres (22)
Kz, min W errormex /W mex (23)

The maximum pitch, banlkandheading errors used for

this evaluatiorcorrespond to 5 degrees, 6 degrees and

10 degrees respectively.

The actual time-constant gaiase computed
using frequencyseparationand bytaking into account
the corresponding lowerlimits. The automatically
scheduled gains are computed as follows:

Kt, = max(S/wq, Krgmm) (24)
Kty = 3K, (25)

Kr, =3KTt, (26)

Kr, = max(3/wp, Krwmm) 27
Kr, = max(3KT¢,Krwm_n) (28)
KTy, =3KT,, (29)

K1, =3/w, (30)

GuidanceControl Laws

The longitudinal guidance control laws use the
automatically scheduled gains to compute FPA
commandsy) for each longitudinal flight modéhese
commandsare then convertedinto the associateditch

rate commands@,).
The vertical speed control law uses Hititude
rate command mc) andthe aircraft's groundspeed )

to compute _
y, = tan‘l(hc/vg)

where h, is limited to v, tany, ..

The altitude capture and hold control law
computes the altitudeate commandrom the altitude
error (), which is represented as thistance between
the aircraft’s altitudeh) and the target altitudég.

@1

h,, =h-h, (32)
oo 1
h = KTh(hen) (33)

The glideslopecaptureand tracking control
law is computed similarly, however the glideslope
deviation and range signals are used to comaltitade
error, above or below the glideslope. Theference
angle of the glideslopeyy,) is alsoused inorder to
compute

: 1
=y, tan -— 34
hc g yref KTh herr ( )

The altitudeandglideslope capture modese engaged
when @, < 0 andh, <0) or g, >0 andh, > 0).
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A variable altitude flare maneuver was
developed in order taaccommodate a wide range of
approach conditions for different aircraft. The flare
control law uses thepecifiedsink rate at touchdown
(hy <0) as a constant altitude rate command. fldre

mode is engagedhen theaircraft reacheshe altitude
required for the flare maneuvéy ().

hflare = KTy(h[d - Vg tan y (35)
Oncethe FPA commandhas beencomputed for the

currentlongitudinal mode, theommand islimited by
1Y .- Thecommand isthen converted,using FPA

feedback, into the associated pitch rate command
0, =Kt (v. ) (36)
and limited by+6, .

The lateral guidance control laws use the
automaticallyscheduledgains to compute banéngle
commands ¢) for each lateral flight mode. These
commandsare then convertedinto the associatedroll

rate commandsg).).

The headingselectand heading holdcontrol
laws use thecommanded headingngle ¢.), and
heading feedbackfrom the aircraft's sensors ¢), to
compute

@ = sng4 L Y a 37)
c %cose KTy ]
where the heading error
Ve =4~ (38)

is limited to K7 ..

The localizercaptureandtracking control law
is computedsimilarly, howeverthe localizer deviation
andrangesignals are used tocompute thecross-track
error (oc,,) from the runway centerline. Thecalizer
referenceangle @) is alsoused inorder to compute
the track angle errog(,,).

loc, U (
e (W-va) ©9

whereloc, is limited to iKTlocngTwljlrmx. The

localizer capture mode isngagedwhen (¢., < 0 and
loc,u < 0) or (¢e,> 0 and logy> 0).

Once the bank anglecommand has been
computed forthe current lateral modehe command is
limited by £@,.. The command isthen converted,

using bank angléeedbackjnto the associatedoll rate
command

-1

L:Uerr :sn

@ =K1 (0 -9 (40)

and limited by+@.__ .

7

GuidanceCommandrransformation

The guidance commandransformation logic
converts autopilot pitchrate and roll rate commands,
into corresponding body-axis commands.

pAPqnd :Cl’c—ll/csme (41)
Uppemg = O, COSQ - cOSOSNg  (42)
MNporg = Y. COSOCOSP— B, Sing 43)

To achieve turn coordination, the heading @mmand
is computed as
Y. =-=sing, cosd
Vt
Autopilot commands camalso be transformed into
normal and lateral acceleration commands.

\'A q
. MAPcmd
g

Y ppera = 0

J (44)

NZyp. , =

Pcmd — (45)

(46)

Flight Director

Flight directors provide guidance commands to
the pilot through thegraphical display ofpitch and
bank errors. Theilot controls the pitchand bank of
the aircraft in order to null the errors. dual cueflight
director uses a horizontal bar to indicpteh error and
a vertical bar to indicate bank error.

The genericflight director receives commands
from the guidancecontrol laws,and utilizes thesame
automaticallyscheduledgains. The horizontabar is
driven by the pitch error term

(ec - qf)

A Kt
Bro0 = (8.~ 6) + ¢
where the modifieghitch command GC) is rate limited

3 (47)

by i@max, and the pitch rate feedback is filtered by

o =———q (48)

S+ a)q
The horizontal bar is driven by the bank error term

tou=(0-0)+ (2~ )

where themodified bank command (Bc) is rate limited

(49)

by i(,bmax, and the roll rate feedback is filtered by

Py =—=—p (50)

S+C¢)p
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Simulation Tests

The generic neurdlight control andautopilot
system wasevaluated orhigh fidelity simulations of
threedistinctly differentaircraft. A description okach
simulated aircraft is provided, along with the
correspondingsimulator descriptions. Test results are
presented,along with comparisons teach aircraft's
respective conventional system.

TestEnvironment

Evaluations were conducted using tdifferent
flight simulation environments, figure 3. Stepublets
were performed on desktopflight simulator, which
includes a generic math modsid programmablédlight
displays!

Piloted simulationswere performed on the
NASA Ames full-mission ACFS simulator The
ACFS is equipped with a sidegree-of-freedormotion
system, programmableflight displays, digital sound
and aural cueing system, and.80-degree field ofiew
visual system.

Figure 3. Desktop & Motion-Based Flight Simulators

High fidelity aerodynamic models were
provided for all three simulated aircraft, whicbnsisted
of a mid-sizedtwin-engine commerciajet transport
concept, amodified F-15 with moveable canards

attached to the airframe, and a small single-engine UAV

hypersonic “waverider” concept. Simulationswere

performed at 30 Hz for the transport, 200 Hz for the F-

15, and 100 Hz for the UAV.

The Lockheed Georgia designed commercial
transport concept, figure 4, iepresentative of anid-
size two-engine jet transport with genechhracteristics
of a wide-body,T-tail, low wing airplane with twin
turbofan engines locatathderthe wings. Thephysical
dimensions are similar to a Boeing 757 aircraffiil the
flight characteristics otthe open loopdynamics are
representative of a mid-sizeget transport. This
particular transport aircraftlesigned as alatform for

8

testing advanced concepts, is equipped with adtigit
controls representative of anadvanced fly-by-wire
control system.

= L= ] I
- -

- = I

Figure 4. Commercial Transport Concept

BEE 10 e

The F-15 ACTIVE aircraft, figure 5, is
currently in operation at NASMryden. It is not a
conventional F15 in that it hasanards andthrust
vectoring nozzles, whictcan be used tosimulate
failures in flight. Theaircraft is configuration G of the
US Air Force’sShort takeoff and landing Maneuver
Technology Demonstrator (S/MTD) program.

Figure 5. Modified F-15 Aircraft

The LoFLYTE™ UAV, figure 6, was
developed by AccurateAutomation Corporation in
cooperationwith NASA Langley ResearchCenter and
the US Air ForceResearch Laboratory at Wright-
Patterson Air ForceBase. The UAV is al00 inch
subsonic jet prototype of a high-lifipw-dragMach 5
aircraft concept. It is the first flying“waverider’
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airbreathing aircrafdesigned to “ride”the hypersonic
shock wave that it produces for improved efficiency.

i .
;. \".l _..;.'\-'_'_-"-_ ; l'—'ﬂ'\u,,;-—
al -
L] = L] = L] -] i E e
' "‘-ll — 1. F\"*
IRV f
E 3 — 3 _! #
j il 17 A
-y = = = . 1 = =
Figure 6. Hypersonic UAV Aircraft ] - | i .
1, | 1 B Pyl
The Earth atmosphere isased on al976 ! | | LP !_’ L _
standard atmosphere model. Th®ryden turbulence 0 ol o " ' ¥ L =
model is used to turbulence RMf&d bandwidth values )
which are representative gluesspecified inMilitary Figure 7. Transport Doublets
Specifications Mil-Spec-8785-D of April 1989. (- Neural, -- Conventional)
TestDescription Figure 8 displays a similar stepoublet

maneuver forthe F-15 aircraft. Once again, the
The neural flight control system wasaluated ~ eSPonses using theeural flight control system are
on the desktop flight simulator by performing stick and Similar to the F-15's conventional flight control
rudder pedastep doublets. Resultre compared to the SyStém. Theneuralflight control systemappears to
correspondingconventional flight control system for Nave less coupling between the roll and yaw axes.
eachaircraft. Whilethe transportand F-15 aircraft are

equipped With advar_lced fly-by-wire contrpl systems, the; L 1 3 il _,.f("-,
UAV is equippedwith an open-loop flight control ts \;_____::_-.c'-""'. E v N
system based on actuator control. 4 punmuili ] i

The generic autopilot wasevaluated on the iy i - - iy i ol =
desktopflight simulator using heading and vertical g | r f _
speedstep commands, as well as altituckpture and § it II._I"_ —] i ;._-"' \ |
hold maneuvers. Approacind landing scenariosvere i i iy
used toevaluate localizerand glideslope capture and i " - i i, i - -
tracking performance. E . R ac= i '

The neuralflight control and flight director E“ "h\/ﬁ | 3§ | —==
systemswere also evaluated byNASA test pilots on i - i
the full-mission motion-basedsimulator. Flight tests . - - oy i, i i o
were performedusing the transportaircraft model, [ Y re .
acrossmultiple flight conditionsunder nominal and i’ g Y = / "1\
simulator failure conditions. sk . . |l ‘; r P

TestResults Figure 8. F-15 Doublets

The resultspresented irthis sectionprovide a (- Neural, -- Conventional)

basis for evaluating the capability, of theneric neural
flight control and autopilot system, in controllitigree
completely different aircraft.

Figure 7 displays a sample pitch rate, ralie,
and yaw ratestep doubletmaneuver forthe transport
aircraft. The responsassing theneuralflight control
system are compared tothe transport aircraft's
conventional flight control system. Thesponses are
similar in the pitch and roll channels. The neldlight
control systemdemonstrates a cleanarsponse in the
yaw channel. The yaw rate generated during dtierate
doublet is a result of turn coordination.

Figure 9 displays a sample pitch rate, rate,
and yaw rate step doubletmaneuver forthe UAV
aircraft. Since the conventional UAV flight control
system utilizes an open-loop architecture, rigponses
are expected to be less precise than that fyflay-wire
control system. The pitch axis exhibits a high
frequencyresponsewith a fairly large overshoot. The
roll andyaw axis coupling isvident inthe dutchroll
oscillations.

9
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Figure 9. UAV Doublets
(- Neural, -- Conventional)

In general, the neurdlight control system
wasfound to provide a first-orderesponse in althree
axes foreachaircraft. As aresult, the longitudinal and
lateral autopilot modes exhibitedsimilar first-order
responses. However, thgeneric guidancesystem is
designed onthe assumption that theeural flight
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Figure 10. Stabilizer Failure
(- Neural, -- Conventional)

The neuralflight controller was also able to
automatically compensate for tlsteady-state sideslip
generated by aengine-out failure, withoutrequiring
manual rudder trim, figure 11. In both failure cases, the
performance undethe neuralflight controller was
described as “transparent” to theint where*“it doesn’t

control system can provide consistent handling qualitiesfeel like you have any problems at all”.

across flight conditions and under different aircraft
configurations.

The neuralflight control system was also
evaluated by two NASA tegtilots using theransport
aircraft model. The handling qualitiegere evaluated at
different flight conditionsundernominal and simulated
failure conditions. The simulated failur@scluded a
nose-down runawaystabilizer trim, an engine-out
failure, and acontroller failure. In all casesufficient
control authorityremained tostabilize theaircraft. In
the case ofthe controller failure, the neurdlight
controller was initialized with no prioknowledge of
the aircraft's stability and control derivatives.
Essentially, the pre-trained neural network was
initialized with an identity matrix for modeling the
aircraft's control derivative estimates.

Under nominal conditions, theneural flight
controller wasdescribed as'pure axis by axis,well

damped andwith) good response”. In general, it was

described asfairly representative” ofthe conventional
controller. Under simulated failure conditions, the
neuralflight controller wasfound to provide aslight
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Figure 11. Engine-Out Failure
(- Neural, -- Conventional)

In the case of the controller failure, the
adaptive neurahetworkshad to perform a significant

improvement over the conventional controller. In the amount of adaptation, particularly in the rahannel,

case of the stabilizer failure, both controllersre able
to automatically compensataith the elevator to
stabilizer the aircraft. However the neural flight
controller providedadditional elevator deflectioduring
pitch-up maneuvers,until control saturation was
reached, in arattempt toprovide consistenthandling
qualities, figure 10.

10

in order to follow desired handling quality reference
models, figure 12. Pilots commented that “yean feel

the handling qualities getting better...it was sloppy and
then it got real precise”.

American Institute of Aeronautics and Astronautics



20

15}

104

o
T

[5]

o

Roll Rate (deg)

-101

[6]

-15

10 20 30 70 50 )

Figure 12. Controller Failure
(-- Command, - Response)

[7]

Conclusions

The neuralflight control system usegre- [8]
trained neural networks to provide dynamic estimates of
the aerodynamicstability and control characteristics,
which are computed using a vortex-lattimade. On-line
learning neural networkare used tocompensate for
errorsresulting from the estimates, as well dieectly
adapting to changes ithe aircraft dynamicsdue to
unexpected damage dailures. Thegeneric guidance
system takesadvantage ofthe consistenthandling
qualities,provided bythe neuraflight control system,
by performing automatic gain-schedulifmsedupon
the neural flight control system’s reference models.

The resultspresented inthe previous section
demonstratehe effectiveness of a generic neufight
control and autopilot system in controllingthree
distinctly different aircraft. The genergystemcan also
help to reducethe high costassociatedvith avionics
development since it does not require gain-scheduling or
explicit system identification.

In general, the resultsdemonstratethat the
generic system can achieve performanceyhich is
comparable teeach aircraft'sconventional system. The
neural flight control systensanalso provide additional
potential for accommodating damage or failures.
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